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Abstract

Models of infectious disease dynamics suggest that treatment, vaccination, and isolation are
required for the control of infectious diseases. Considering that vaccination is one of the most
effective methods to control infectious diseases, it is often not possible to rapidly vaccinate all
susceptible populations in the early stages of the spread of infectious diseases due to the limitation
of the number of vaccines, insufficient medical personnel, or the slow progress of vaccination efforts.
Our simulation analysis by building an SVIWRD model found that the degree of negative impact
of infectious diseases shown when young and old people were divided into two populations and
vaccinated at different rates was different.Therefore, for the current problem of continued spread
of COVID-19, we consider the infectious disease dynamics model to achieve the goal of making the
risk of COVID-19 infection lower by controlling the proportion of vaccination of elderly and young
people. In this paper, we divided young and old people into two groups, established an SVIWRD
model, performed single-objective optimization using Pontryagin’s maximum principle, and used
the Runge-Kutta method for numerical calculation and simulation, so as to arrive at a certain
vaccination ratio that plays the effect of reduced negative impact of COVID-19.

1 Introduction

The COVID-19 pandemic has severely impacted populations and economies worldwide, with global
cases reaching 704,753,890, deaths 7,010,681, and recoveries 675,619,811 as of April 13, 2024 [24].
Despite prevention efforts, new infection waves persist, highlighting uncertainty about the pandemic’s
resolution [19].

Researchers are working to develop vaccines, prevention strategies, and treatments against the
coronavirus. The emergence of virus variants necessitates more effective vaccines to curb infections.
Mathematical models play a critical role in predicting infection trends and designing optimal control
strategies [10, 25, 26, 1, 23, 21]. These models underscore the importance of combining treatment,
vaccination, and isolation measures, with vaccination being the most effective. However, limitations
like vaccine shortages and logistical challenges often impede rapid vaccination.

Vaccines are not fully effective, and infections may still occur post-vaccination. Paper [18] explored
optimal vaccination coverage to minimize costs and infection losses. Building on this, our study
employs the SVIWRD (Susceptible-Vaccinated-Infected-Waned-Removed-Death) model to analyze the
impact of vaccination rates on young and elderly populations. Using Pontryagin’s maximum principle
[9] and numerical methods like the Runge-Kutta method [3], we identified an optimal vaccination ratio
to reduce COVID-19 transmission [7, 16, 8, 4, 11, 17]. This paper is structured as follows:

• Section 2 introduces the SVIWRD model and age-based population groups.

• Section 3 derives the disease-free equilibrium and the basic reproduction number R0 under
constant control.
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• Section 4 investigates the sensitivity of R0 to parameters.

• Section 5 applies Pontryagin’s maximum principle to determine the optimal control using ad-
joint functions.

• Section 6 provides numerical simulations for vaccine allocation strategies.

• Section 7 concludes with discussions and implications.

2 SVIWRD model

The SVIWRD model, a variation of common epidemic models, assumes constant mortality and birth
rates, maintaining a steady population during the epidemic. Given the higher mortality risk for the
elderly (60+ years) and the greater infection spread risk among the non-elderly (below 60 years), the
population is divided into these two groups. This study constructs the following SVIWRD dynamic
system model:
Elderly:

S′
1(t) = aS2(t)− [β11I1(t) + β12I2(t) + η1β11W1(t) + η2β12W2(t)]S1(t)− µ1S1(t)− u(t)v,

V ′
1(t) = aV2(t) + u(t)v − σ1 [β11I1(t) + β12I2(t) + η1β11W1(t) + η2β12W2(t)]V1(t)− µ1V1(t),

I ′1(t) = aI2(t) + [β11I1(t) + β12I2(t) + η1β11W1(t) + η2β12W2(t)]S1(t)− (µ1 + γ1 + d1) I1(t),

W ′
1(t) = aW2(t) + σ1 [β11I1(t) + β12I2(t) + η1β11W1(t) + η2β12W2(t)]V1(t)− (µ1 + γ1 + δ1d1)W1(t),

R′
1(t) = aR2(t) + γ1I1(t) + γ1W1(t)− µ1R1(t),

D′
1(t) = d1I1(t) + δ1d1W1(t).

Non-elderly:

S′
2(t) = b− [β21I1(t) + β22I2(t) + η1β21W1(t) + η2β22W2(t)]S2(t)− (µ2 + a)S2(t)− [1− u(t)]v,

V ′
2(t) = [1− u(t)] v − σ2 [β21I1(t) + β22I2(t) + η1β21W1(t) + η2β22W2(t)]V2(t)− (µ2 + a)V2(t),

I ′2(t) = [β21I1(t) + β22I2(t) + η1β21W1(t) + η2β22W2(t)]S2(t)− (µ2 + γ2 + d2 + a)I2(t),

W ′
2(t) = σ2 [β21I1(t) + β22I2(t) + η1β21W1(t) + η2β22W2(t)]V2(t)− (µ2 + γ2 + δ2d2 + a)W2(t),

R′
2(t) = γ2I2(t) + γ2W2(t)− (µ2 + a)R2(t),

D′
2(t) = d2I2(t) + δ2d2W2(t),

(1)

with the initial conditions Si(0) > 0, Vi(0) ≥ 0, Ii(0) ≥ 0,Wi(0) ≥ 0, Ri(0) ≥ 0 and Di(0) ≥ 0, i = 1, 2.
Here, S is the susceptible population, V is the vaccinated population, I is the infected population,
W is the infected population after vaccination, R is the recovered population, and D is the dead
population due to disease. a is the natural growth rate of age. When the model spans a longer time
period, the natural growth rate should be considered as non-elderly individuals transition into the
elderly group. However, since this study focuses on the early stage of the epidemic (0.2 years), a = 0
is assumed. b is the natural birth rate, βij is the rate of disease transmission from Ij to Sj , ηi is the
reduction ratio of infectivity of people who are infected after vaccination. µ is the natural mortality
rate, d is the disease-induced mortality rate, γ is the recovery rate. v is the number of vaccination
done per unit time. u ∈ [0, 1] is the control function representing the ratio of vaccine allocation to the
elderly people: u(t)v and [1− u(t)]v are the numbers of vaccination allocated at time t to the elderly
and non-elderly populations, respectively. In this model, we assume that the vaccine efficacy can not
be perfect, so σ ∈ [0, 1] is the efficacy in reducing the disease transmission rates (σ = 0 implies the
perfect efficacy, i.e., no infection occurs in the vaccinated population), and δ ∈ [0, 1] is the efficacy
in reducing the disease-induced death rate (δ = 0 implies that no disease-induced death occurs in



the vaccinated population). Moreover, η in [0,1] is the efficacy in reducing the infectivity of infected
individuals. Among them, the subscripts 1 and 2 represent the elderly and non-elderly populations,
respectively. For the flowchart of the model, see Figure 1.

(a) Elderly population

(b) Non-elderly population

Figure 1: Flowchart of the SVIWRD model with elderly and non-elderly populations

3 Disease-free equilibrium and basic reproduction number

In this section, we derive the disease-free equilibrium and basic reproduction number R0 of model (1)
in the case where the control function is constant (u(t) = u). “Disease-free equilibrium” is the state
in a disease model where there are no infected individuals present. The disease-free equilibrium can
formally be expressed as

(S0
1 , V

0
1 , 0, 0, 0, 0, S

0
2 , V

0
2 , 0, 0, 0, 0),

where
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Hence, the disease-free equilibrium exists uniquely if S0
1 , S

0
2 > 0, which is equivalent to

v < min

(
b

1− u
,

ab

a+ µ2u

)
.

In what follows, unless otherwise noted, we assume that this inequality holds and the disease-free
equilibrium uniquely exists. The basic reproductive number (R0) of an infectious agent is defined as
the average number of secondary infections produced by an infected individual in a disease-free host
population [5]. R0 determines whether a pathogen can persist in such a population and is valuable
for assessing control options. When R0 is less than 1, on average each infectious individual infects
less than one other individual, and the pathogen will die out in the population. In contrast, when R0

exceeds 1, numbers of cases will on average rise over time, and an epidemic can occur [8].
In order to verify how effective this model is in controlling infectious diseases through vaccination,

we need to calculate the value of the basic reproduction number R0 and analyze its stability. Following
[6], we consider the linearized equations around the disease-free equilibrium as follows:

I ′1(t)

I ′2(t)

W ′
1(t)

W ′
2(t)

 =


(β11I1 + β12I2 + η1β11W1 + η2β12W2)S

0
1
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0
2

σ1 (β11I1 + β12I2 + η1β11W1 + η2β12W2)V
0
1

σ2 (β21I1 + β22I2 + η1β21W1 + η2β22W2)V
0
2

−


(µ1 + γ1 + d1) I1 − aI2

(µ2 + γ1 + d2 + a) I2

(µ2 + γ1 + δ1d1)W1 − aW2

(µ2 + γ2 + δ2d2 + a)W2

 .

Using the general theory in [6], R0 can be calculated as R0 = ρ
[
FV −1

]
(ρ denotes the spectral radius),

where
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0
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and

V =


µ1 + γ1 + d1 −a 0 0

0 µ2 + γ2 + d2 + a 0 0
0 0 µ1 + γ1 + δ1d1 −a
0 0 0 µ2 + γ2 + δ2d2 + a

 .
Note that F − V is the Jacobian matrix at the disease-free equilibrium. From [6, Theorem 2], we see
that if R0 < 1, then the disease-free equilibrium is locally asymptotically stable, whereas if R0 > 1,
then it is unstable. In other words, R0 < 1 means that the infectious disease will stop spreading and
R0 > 1 means that the infectious disease will continue to spread.

4 Optimal control in the SVIWRD model with vaccination

4.1 Problem Definition

Let u(t) represent the proportion of the population vaccinated among the elderly at time t. The
objective is to minimize the following cost functional:

J(u) =

∫ tf

0

(
k1I1 + k2I2 + l1D1 + l2D2 +

m1

2
(uv)2 +

m2

2
((1− u)v)2

)
dt, (3)

where



• k1, k2 are the cost coefficients for infections of the elderly and non-elderly, respectively.

• l1, l2 are the cost coefficients for deaths of the elderly and non-elderly, respectively.

• m1,m2 are the cost coefficients for distributing vaccines to the elderly and non-elderly, respec-
tively.

• u(t) ∈ [0, 1] is the control variable, representing the fraction of the vaccine allocated to the
elderly at time t.

The dynamic equations of the system are described by the SVIWRD model, which accounts for
the changes in susceptible (S), vaccinated (V ), infected (I), waned (W ), recovered (R), and deceased
(D) populations.

4.2 Hamiltonian Definition

Using Pontryagin’s Maximum Principle [9], we define the Hamiltonian function as:

H = k1I1 + k2I2 + l1D1 + l2D2 +
m1

2
(uv)2 +

m2

2
((1− u)v)2 +

12∑
i=1

λifi, (4)

where

• λi are the adjoint variables.

• fi are the right-hand side functions of the state equations.

4.3 Existence and Uniqueness of the Optimal Control

(i) Existence and Uniqueness of the Solution to the State and Adjoint Equations

The right-hand side of the SVIWRD model is Lipschitz continuous with respect to the state variables
in any bounded closed region Ω ⊂ R12

+ . That is, there exists a positive constant L > 0 such that

∥f(t, x1, u)− f(t, x2, u)∥ ≤ L∥x1 − x2∥ for all x1, x2 ∈ Ω, u ∈ [0, 1] and t > 0, (5)

where f = (f1, f2, . . . , f12) and ∥ · ∥ denotes the Euclidean norm. This ensures the existence and
uniqueness of the solution to the state equations. Similarly, we can verify the existence and uniqueness
of the solution to the adjoint equations by virtue of the Lipschitz continuity of the system.

(ii) Strict convexity of the Cost Function and the Hamiltonian

The cost functional J(u) is strictly convex in u because it includes terms like (uv)2 and ((1 − u)v)2,
both of which ensures that ∂2J/∂u2 > 0. By a similar reason, the Hamiltonian H is also strictly
convex in u.

(iii) Existence and Uniqueness of the Optimal Control

The control variable u(t) is bounded, meaning u(t) ∈ [0, 1] and is Lebesgue measurable. According
to the optimal control theory [9], such constraints guarantee the existence of the optimal control. By
applying Pontryagin’s Maximum Principle [3, 7], we can obtain the optimal control u∗(t) by solving
the condition:

∂H

∂u
= 0 at the optimal solution. (6)



This gives us an expression for u∗(t). Specifically, the optimal control u∗(t) is given by

u∗(t) = min

(
max

(
0,
v(λ1 − λ2 + λ8 − λ7)

m1v2 +m2v2

)
, 1

)
. (7)

This form guarantees the uniqueness of the optimal control u∗(t).

5 Numerical simulation

In this section, we perform numerical simulation adopting the optimal control u∗. For solving ordi-
nary differential equations (ODEs), we use the standard fourth-order Runge-Kutta method. In the
simulation, we use the parameters as shown in Table 1, which are chosen considering the COVID-19
in Japan for 0.2 year from April 2021, when the vaccine distribution started in Japan.

Table 1: The summary of parameters used in simulation

Parameter Value Description Reference

(β11, β12, β21, β22) q(0.25, 1, 1, 4) Disease transmission rate Assumed

q 40 Scaling parameter for intensity of disease spread Calculated

a 0 Transfer rate from the non-elderly group to the elderly group Assumed

b 0.0219 Birth rate Calculated

(µ1, µ2) (1/20, 1/80) Natural mortality [12]

(d1, d2) (2.4, 0.024) Disease-induced mortality [13]

(γ1, γ2) (24, 24) Recovery rate [2]

v 0.8 Number of vaccination shots per unit time [14]

(σ1, σ2) (0.4, 0.4) Vaccine efficacy (1− σ1, i = 1, 2) to reduce the susceptibility [20]

(δ1, δ2) (0.2, 0.2) Vaccine efficacy (1− δi, i = 1, 2) to reduce the disease-induced mortality [20]

(η1, η2) (0.5, 0.5) Vaccine efficacy (1− ηi, i = 1, 2) to reduce the infectivty [15]

(k1, k2) (1, 2) Cost coefficient of being infected Assumed

(l1, l2) (100, 200) Cost coefficient of being dead Assumed

(m1,m2) (0.1, 0.2) Cost coefficient of distributing vaccines Assumed

The biological justification for them is as follows:

• The unit time is 1 year.

• Based on [12], we assume that the average life expectancy is 80 years. The people aged more
than 60 is categorized as elderly, and thus, the average life expectancies for each group are
1/µ1 = 20 and 1/µ2 = 80, respectively. Moreover, the average sojourn time in the non-elderly
group is 1/a = 60.

• In the absence of disease and vaccination, the total population is calculated as

S0
1 + S0

2 =
aS0

2

µ1
+ S0

2 =
µ1 + a

µ2 + a

b

µ1
.

Under the assumption that the total population is normalized as 1, the parameter b can be
calculated as

b =
(µ2 + a)µ1
µ1 + a

≈ 0.0219.

• Based on [2], we assume that the average infection period (1/γi, i = 1, 2) for both of the elderly
and non-elderly people is 1/2 month = 1/24 year.



• Based on [13], we assume that the disease-induced mortality in elderly people is 100 times higher
than that in non-elderly people, and about 10 percent of the infected elderly people become
severe. Regarding the severe individuals as removed individuals, we assume that d1 = 0.1γ1 = 2.4
and d2 = 0.01d1 = 0.0024.

• Based on [14], we assume that 80 percent of total population has been vaccinated after 1 year
passed, and thus, v = 0.8.

• We assume that the vaccine efficacy is the same for two age groups. By [20], we assume that the
reduction effect in infection risk is 60 percent (1−σi = 0.6, i = 1, 2) and that in disease-induced
death is 80 percent (1 − δi = 0.8, i = 1, 2). Moreover, by [15], we assume that the reduction
effect in disease transmission is 50 percent (1− ηi = 0.5, i = 1, 2).

• We assume that βij = qϕiψj , i = 1, 2, where q is a scalling parameter for intensity of disease
spread, and ϕi and ψi are the susceptibility and infectivity in group i, respectively. We can
consider that elderly people is more careful and more likely to reduce the contact opportunity
because the disease-induced mortality is quite high. Hence, we assume that ϕ1 = ψ1 = 0.5 and
ϕ2 = ψ2 = 2. The scalling parameter q is set to be 40 so that the basic reproduction number
in the absence of vaccination approximates 5, which is close to the estimated value for the delta
variant [22].

• We assume that the cost of disease-induced death is 100 times higher than that of infection
(li = 100ki, i = 1, 2). Moreover, from the perspective of remaining life, we assume that the cost
in non-elderly people is 2 times higher than that in elderly people. Thus, setting k1 = 1, we
obtain k2 = 2, l1 = 100 and l2 = 200. Moreover, we assume that the cost of vaccine distribution
is 10 times less than that of infection. Here, we can consider that distributing vaccines in non-
elderly people is much harder than in elderly people because the disease-induced death rate is
lower in non-elderly people, and therefore, some of the non-elderly people often show the vaccine
hesitancy.

The initial condition is fixed as follows

S1(0) = 0.33, S2(0) = 0.65, I1(0) = I2(0) = 0.01, Vi(0) =Wi(0) = Ri(0) = Di(0) = 0, i = 1, 2.

The optimal control u∗ can be calculated as shown in Figure 2.

Figure 2: The optimal control u∗

Moreover, Figure 3 shows that the infected and dead populations in the optimal case u = u∗

(green) and the uncontrolled case u = 0.5 (red).



(a) Infected elderly population I1 +W1 (b) Dead elderly population D1

(c) Infected non-elderly population I2 +W2 (d) Dead non-elderly population D2

(e) Total infected population I1 + I2 +W1 +W2 (f) Total dead population D1 +D2

Figure 3: The infected and dead populations in the optimal case (u = u∗, green) and the uncontrolled
case (u = 0.5, red)

From these figures, we obtain the following insights:

1. Adopting the strategy of giving priority to the elderly for vaccination will result in the lowest
cost.

2. Due to the adoption of a priority vaccination strategy for the elderly, the number of infections
and deaths in the elderly population will decrease, but the number of infections and deaths in
the non-elderly population will increase.



3. After adopting the strategy of giving priority to the elderly for vaccination, the number of
deaths in the total population will decrease, but the number of infections will increase. If the
infection weight parameter is adjusted higher, the simulation results will change. As the infection
weight parameter increases, the number of deaths might gradually increase and the number of
infections will gradually decrease. At this time, priority might be given to non-elderly people
for vaccination.
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